skip to main content


Search for: All records

Creators/Authors contains: "Winner, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Monitoring avian migration within subarctic regions of the globe poses logistical challenges. Populations in these regions often encounter the most rapid effects of changing climates, and these seasonally productive areas are especially important in supporting bird populations—emphasizing the need for monitoring tools and strategies. To this end, we leverage the untapped potential of weather surveillance radar data to quantify active migration through the airspaces of Alaska. We use over 400 000 NEXRAD radar scans from seven stations across the state between 1995 and 2018 (86% of samples derived from 2013 to 2018) to measure spring and autumn migration intensity, phenology and directionality. A large bow-shaped terrestrial migratory system spanning the southern two-thirds of the state was identified, with birds generally moving along a northwest–southeast diagonal axis east of the 150th meridian, and along a northeast–southwest axis west of this meridian. Spring peak migration ranged from 3 May to 30 May and between, 18 August and 12 September during the autumn, with timing across stations predicted by longitude, rather than latitude. Across all stations, the intensity of migration was greatest during the autumn as compared to spring, highlighting the opportunity to measure seasonal indices of net breeding productivity for this important system as additional years of radar measurements are amassed. 
    more » « less
  2. Applications of remote sensing data to monitor bird migration usher a new understanding of magnitude and extent of movements across entire flyways. Millions of birds move through the western USA, yet this region is understudied as a migratory corridor. Characterizing movements in the Pacific Flyway offers a unique opportunity to study complementary patterns to those recently highlighted in the Atlantic and Central Flyways. We use weather surveillance radar data from spring and autumn (1995–2018) to examine migrants' behaviours in relation to winds in the Pacific Flyway. Overall, spring migrants tended to drift on winds, but less so at northern latitudes and farther inland from the Pacific coastline. Relationships between winds and autumn flight behaviours were less striking, with no latitudinal or coastal dependencies. Differences in the preferred direction of movement (PDM) and wind direction predicted drift patterns during spring and autumn, with increased drift when wind direction and PDM differences were high. We also observed greater total flight activity through the Pacific Flyway during the spring when compared with the autumn. Such complex relationships among birds’ flight strategies, winds and seasonality highlight the variation within a migration system. Characterizations at these scales complement our understanding of strategies to clarify aerial animal movements. 
    more » « less
  3. Abstract

    The quantification of Hutchinson's n‐dimensional hypervolume has enabled substantial progress in community ecology, species niche analysis and beyond. However, most existing methods do not support a partitioning of the different components of hypervolume. Such a partitioning is crucial to address the ‘curse of dimensionality’ in hypervolume measures and interpret the metrics on the original niche axes instead of principal components. Here, we propose the use of multivariate normal distributions for the comparison of niche hypervolumes and introduce this as the multivariate‐normal hypervolume (MVNH) framework (R package available onhttps://github.com/lvmuyang/MVNH).

    The framework provides parametric measures of the size and dissimilarity of niche hypervolumes, each of which can be partitioned into biologically interpretable components. Specifically, the determinant of the covariance matrix (i.e. the generalized variance) of a MVNH is a measure of total niche size, which can be partitioned into univariate niche variance components and a correlation component (a measure of dimensionality, i.e. the effective number of independent niche axes standardized by the number of dimensions). The Bhattacharyya distance (BD; a function of the geometric mean of two probability distributions) between two MVNHs is a measure of niche dissimilarity. The BD partitions total dissimilarity into the components of Mahalanobis distance (standardized Euclidean distance with correlated variables) between hypervolume centroids and the determinant ratio which measures hypervolume size difference. The Mahalanobis distance and determinant ratio can be further partitioned into univariate divergences and a correlation component.

    We use empirical examples of community‐ and species‐level analysis to demonstrate the new insights provided by these metrics. We show that the newly proposed framework enables us to quantify the relative contributions of different hypervolume components and to connect these analyses to the ecological drivers of functional diversity and environmental niche variation.

    Our approach overcomes several operational and computational limitations of popular nonparametric methods and provides a partitioning framework that has wide implications for understanding functional diversity, niche evolution, niche shifts and expansion during biotic invasions, etc.

     
    more » « less